
 
COLLOCATED COSIMULATION WITH MULTIVARIATE 
BAYESIAN UPDATING: A CASE STUDY ON THE OLYMPIC DAM 
DEPOSIT 
 
 
Mario E. Rossi 
GeoSystems International, Inc., USA 
 
Colin Badenhorst and Shane O’Connell 
Olympic Dam Resource Team, BHP Billiton, Australia 
 
 
ABSTRACT 
The Olympic Dam deposit is the world’s largest single uranium resource, the world’s fourth 
largest copper resource and Australia’s largest gold resource, and it has been exploited by 
underground mining methods for more than two decades.  
 
Conditional simulation (CS) models were developed to provide models of uncertainty which could 
be compared to the existing resource classification scheme, as well as to provide an assessment 
of mine plan risk and short-term variability of metallurgical feed profiles to the plant.  
 
Developing the CS models presented several challenges. In addition to the massive size of the 
deposit and the spatial correlation among the different commodities, very large datasets and 
models provided some unique logistical challenges.  
 
The uncertainty in the key geological variables (haematite abundance and sulphide mineral 
species) are characterised by 30 realisations derived using Sequential Indicator Simulation (SIS) 
and the Maximum A-posteriori Selection (MAPS) algorithm. Simulation domains were then 
constructed for each realisation and used to condition the simulation of copper (Cu), uranium 
oxide (U3O8), gold (Au), silver (Ag), sulphur (S), and in-situ bulk density (SG). The spatial 
correlation between Cu, U3O8, S and Au was modelled using Gaussian collocated co-simulation 
with Bayesian updating, while the remaining grade variables were independently simulated using 
Sequential Gaussian Simulation (SGS). 
 
The resulting CS models are used to evaluate the resource classification scheme, provide an 
analysis of recoverable resources, and provide mill feed grade profiles for different time periods. 
The ability to evaluate this level of information at an early stage of the expansion project is 
invaluable to its progress and subsequent decision making. 
 
 
INTRODUCTION 
The Olympic Dam orebody represents the world’s largest single uranium resource, the world’s 
fourth largest copper resource and Australia’s largest gold resource. The January 2009 resource 
model for the Olympic Dam deposit recorded a total resource of 9.080 billion tonnes at 0.87% 
Cu, 0.27kg/t U3O8 and 0.32 g/t Au, within approximately 12 km3 of the mineralised 
Mesoproterozoic crystalline basement of the eastern margin of the Gawler Craton.  It is covered 
by approximately 350 metres of flat-lying Neoproterozoic to Cambrian sedimentary rocks, 
separated from the basement by a major sub-horizontal unconformity. 



The principal host for mineralisation is the Olympic Dam Breccia Complex (ODBC), which 
describes all breccias and related lithologies associated with the Olympic Dam mineralised 
environment.  This complex is hosted within, and is largely composed of the Roxby Downs 
Granite, and includes lesser contributions of the felsic to intermediate volcanics and numerous 
intrusions of mafic/ultramafic and felsic dykes. Copper sulphide (bornite, chalcocite and 
chalcopyrite), coeval and contiguous uranium (uraninite, brannerite and coffinite) mineralisation 
occurred approximately 1,590 billion years ago, and is characterised by a continuum of weakly to 
strongly haematised breccias.  Central to the deposit is a zone of intense haematite-quartz breccia 
which is largely void of mineralisation. 
 
The major controls on mineralisation of the Olympic Dam deposit are described by the inter-
relationship between haematite abundance and sulphide mineral species. Importantly, there is a 
significant and unequivocal spatial correlation between Cu, U3O8, Au (associated with sulphide) 
and Ag mineralisation across the deposit as a consequence of the co-precipitation of these 
elements as several minerals. Thus, the controls on Cu mineralisation are indeed the same 
controls on U3O8, Au (associated with sulphide) and Ag.  
 

 
Figure 1: Depiction of an idealised cross-section through the Olympic Dam deposit showing the distribution of sulphide 

mineral species within the ODBC 
 
 
METHODOLOGY 
 
Simulation of Geologic Variables 
The simulated geologic model was developed based on haematite (DomLit) and Cu mineral 
species (DomMin) variables that are used to define the estimation and simulation domains. The 
categorical SIS method [1] with a local-varying mean (LVM) uses the same principles as the 
Multiple Indicator Kriging (MIK) technique for grade simulation and estimation, except that it 
deals with a categorical variable [2].  
 

 

 

 

 

 



The simulation parameters are not only dependent on the software used for simulation, but also 
are part of the “uncertainty model”, in the sense that the different parameters (search ellipsoids, 
number of samples and simulated values to be used, the definition of octant searches, etc.) may 
provide different levels of uncertainty. Thus, these parameters need to be carefully considered [3].  
 
Pangeos software (www.statios.com) was used for both geological and grade simulation. The 
main steps used to simulate the geological variables were: 
 

• The categorical variables are transformed into a series of indicators: 7 for the haematite 
categories and 4 for the sulphide mineral species categories. The indicators defined the 
presence or absence of each category. 

• The basic statistics (proportions or relative abundance) of each category are obtained, as 
well as the corresponding directional indicator variogram models.  

• A locally-varying mean (LVM) model was created using Inverse Distance cubed, and the 
subsequent local mean value at each simulation node was then used to condition the 
simulated values. This local mean value aids the simulation process in accounting for 
trends and departures from the strict stationarity assumption required by the simulation 
method. 

• At each node being simulated, a cumulative frequency curve representing the probability 
of each category present at that location is obtained using MIK. A random number 
between 0 and 1 is then drawn and the corresponding categorical value is then selected 
accordingly. 

• After incorporating the previously simulated node into the simulation database, the 
process is repeated until all nodes on 10 x 10 x 5m spacing are simulated. This process is 
repeated independently for each domain, culminating in a model comprising 29.5 million 
nodes. 

• A post-processing routine (MAPS, [4]) was used to locally modify the simulated values 
such that low probabilities for some categories in areas of unlikely occurrences were 
“cleaned up”. This is important particularly in those areas where the category is known to 
be a singularly massive unit, but the simulated model may present non-existing simulated 
categories stemming from very low probabilities of occurrence. MAPS changes “clean-
up” about 1 or 2% for each category, and thus provides a small improvement in the 
reproduction of the original statistics.  

 
A total of 30 realisations were obtained for both categorical variables. The combinations, at each 
node, of these two variables define the 30 simulation domains used to uniquely condition each 
grade simulation. Thus, a measure of uncertainty as introduced by the geologic model is also 
introduced into the simulated grade model. 
 
Validations 
The simulated values should reproduce the basic statistics of the original data (5m composites), as 
well as the variogram models used in the simulation. In the case of the categorical (geological) 
variables, the basic statistics to be reproduced are simply the proportions of each category within 
the original database. Generally, these are well reproduced with the exception of volumetrically 
small domains. 
 
The other aspect that should be checked is the reproduction of the spatial variability model used 
to simulate each indicator. Figure 2 shows the comparison for the chalcopyrite-pyrite (CPY-PY) 
unit in Domain 320, in the central area of the deposit. The overall tendency, with few exceptions, 

http://www.statios.com/


is for the simulated values to exhibit more continuity than suggested by the 5m composites, 
although within acceptable margins.  
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Figure 2: CPY-PY indicator variogram with 5m composite models – Domain 320, realisation No.10 

 
Statistically, there is a tendency of the simulated values to disguise the differences in proportions 
observed in the 5m composites. This is partially due to local data clustering and difficulties in 
obtaining representative statistics for each domain. In addition, the variability in some domains is 
relatively high, such as Domains 310, 320, and 340, which are both small and narrow in certain 
directions with respect to variogram ranges. 
 
Spatially however, the simulated values honour well the original data and reproduce the spatial 
textures and patterns of connectivity observed in the 5m composites and the resource model. As 
examples, Figure 3 shows the DomLit and DomMin variables for realisation No. 1, Bench -
792.5m. The variability observed is deemed representative of that observed in the drill hole data 
and confirmed by underground geological mapping. 



 
Figure 3: DomLit (left) and DomMin (right) realisation No.1, bench -792.5mRL 

 
Collocated Co-Simulation with Multivariate Bayesian Updating 
Cu, U3O8, Au and S were co-simulated using collocated cokriging [5] with Bayesian updating, 
while Ag and in situ density (SG) were simulated independently using Sequential Gaussian 
Simulation [6]. As with the SIS with LVM categorical simulations, 30 realisations were obtained. 
The steps used to obtain the grade simulations were: 
 

• The basic statistics and variogram models were obtained, and declustering, despiking, 
Gaussian transformations and Gaussian variogram modelling were completed on the 
database. 

• The collocated simulation was established with Cu being the first independently 
simulated variable. The correlation between U3O8 and Cu was modelled by simulation 
domain, and U3O8 was then simulated using the previously simulated Cu as a secondary 
collocated variable.  

• S was then simulated after calculating the combined correlation of Cu and U3O8 as a 
linear combination of the individual correlations. This is called the super-secondary 
variable (SSV) of Cu-U3O8 [7], and is used as the collocated secondary variable. The use 
of SSV is justified by the fact that the dependencies between variables are linear. In the 
case of non-linear dependencies, the Stepwise Conditioning transformation [8] may be 
more appropriate. Figure 4 shows a schematic summarising the process for simulating S. 

• After the simulation for S is completed, the process is repeated for Au. The 
corresponding SSV variable is generated as a linear combination of Cu, U3O8, and S, as 
well as the collocated correlation from the 5m composites. 



• Note that each co-simulation uses updated collocated correlation values in the Bayesian 
sense, generating an SSV to account for the multiple correlations among the variables 
being simulated. The algorithm uses an LU decomposition method to account for the 
correlation between the data and the simulated values. 

 
After validation, the 30 realisations were regularised to the same block size as the resource 
model, such that block-to-block comparisons could be made. The CS model was also used in 
several studies, which require the models to be on the same block size as the resource model. 
 

 
Figure 4: Accounting for multivariate correlations using the “super-secondary variable” concept. Here the schematic 

shows the correlations considered to simulate S, Cu and U3O8 
 
Simulation Plans 
The simulation models were obtained using search radii of 300 x 300 x 300m or 350 x 350 x 
350m, depending on the variable being simulated. An isotropic search was used to provide 
sufficient opportunity for data from all directions to contribute to the simulated value. The 
variogram models were left with the task of reproducing the spatial anisotropies observed.   
 
Between 10 and 12 total values were used as conditioning data, combining both original 
composites and previously simulated nodes. Several options were tried during the development of 
the models, including the option of restricting the simulation to areas were at least one 5m 
composite (original data) was found. A multiple grid search was used, but no octant searches 
were applied.  
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Variogram models for Gaussian data were developed for each grade variable and Domain. The 
data used for the transformation was the despiked 5m composites (see Section 3). Also, the 
minimum and maximum grades used in the back transformation from the simulated Gaussian 
space to the original were modified according to the ranges observed in the 5m composites and by 
looking at the corresponding probability plots. 
 
Simulation Statistics and Validations 
The reproduction of the basic statistics and histogram of simulated Cu grades (not shown here) is 
in general very good in terms of the mean and the median, as well as the variance and thus the 
coefficient of variation.  
 
Figure 5 shows a Q-Q plot comparing simulated Cu values and 5m composites for simulation No. 
25, Domain 4406, with a very good match shown. This is generally the case for most of the 
simulations and domains. 
 

 
Figure 5 : Q-Q plot, realisation No. 25 vs. 5m composites, Cu, Domain 4406 

 
The correlograms of the simulated values tend to show more variability than the models obtained 
from the 5m composites. This is opposite to what was observed in the case of the geologic 
variables. Figure 6 shows three directions for Cu, realisation and Domain 4109. These are some 
of the Domains where the correlogram model is better reproduced. The overall conclusion is that 
the level of reproduction of the spatial variability is acceptable, and thus that the simulation 
model adequately reflects the information used. 
 
The other important aspect that should be analysed is the overall spatial patterns observed in the 
simulated values. As was done with the DomLit and DomMin categorical variables, the simulated 
grades were visualised in plan and sectional views. Figure 7 shows Cu simulation 1 at elevations -
590m. The grade distribution is correctly reproduced in a global and local sense, validating the 
methodology applied. 
 
In addition to the univariate validations, it is also important to check whether the correlations 
among variables are reproduced. This was the case for most domains, although the general 
tendency is for the simulations to reproduce less correlation (as measured by the linear correlation 
coefficient) than the original drill hole data shows, although the comparisons based on rank 



correlations were better. This is believed to be partly due to the higher variability of the simulated 
nodes, and partly due to the lack of robustness of the correlation coefficients derived from 
composites in small or highly variable domains. The comparisons among correlation matrices are 
not shown here due to space constraints. 
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Figure 6: Directional Cu correlograms from simulated values with models from original 5m composites, Domain 4109, 

realisation 1 
 

 
Figure 7: Cu realisation No. 1, -590mRL 

 
 
CONCLUSIONS 



 
The conditional simulation model for the Olympic Dam deposit has been developed using a co-
simulation methodology that accounts for several correlated grade variables. The observed local 
variability is high, as expected, which is partially induced by the geologic variability. With a few 
exceptions, both the simulated geological and grade variables (and the correlation matrix between 
the grade variables) validate well against the original 5m composites used in the simulation. 
 
The key findings of this work and the resulting uncertainty and risk analyses are: 

 
• In some local cases, the CS model tends to be more optimistic in terms of grades and 

tonnages above cutoff than the resource model. This is particularly noticeable for Au 
mineralisation. 

• The continuity and spatial characteristics observed in the 5m composites are reproduced 
well in the haematite and sulphide mineral species simulations (the underlying geological 
controls on mineralisation).  

• The CS model has proven to be a useful tool for studying variability (uncertainty) and its 
associated risks. In this case, three specific applications were developed: 
- A comparison of the uncertainty model (CS) with the resource model suggests that for 

volumes greater than 15 to 20 million tonne parcels, the grade variability decreases 
rapidly.  

- The development of daily, weekly, and monthly concentrator and smelter material feed 
profiles. The method developed using the simulated grades and tonnages to obtain feed 
profiles shows the level of variability that can be expected for key variables such as the 
copper-sulphur (Cu:S) ratio, as well as the individual grades. 

- A comparison of the grade tonnage curves for different domains and mining periods 
with respect to the resource model. The most significant difference is observed with 
respect to Au grades, which is expected given its higher variability and the 
methodology used to estimate Au in the resource model. 

 
The model developed has very few precedents in terms of methodology, and is challenging 
primarily because of its size. The uncertainty and risk analysis derived from the model highlights 
some areas of improvement required for subsequent resource models. The simulation model is 
also a useful tool that, when used in conjunction with the resource model, will allow the most 
uncertain aspects of mine development to be focused on, and thus provide a foundation for risk 
mitigation.  
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